Knockdown of HMGN5 increases the chemosensitivity of human urothelial bladder cancer cells to cisplatin by targeting PI3K/Akt signaling
نویسندگان
چکیده
High-mobility group nucleosome-binding domain 5 (HMGN5) is the latest member of the HMGN family of proteins. Numerous studies have confirmed the carcinogenic role of HMGN5 in cancer, but its function in the regulation of chemosensitivity is largely unknown and controversial. A previous study by the authors of the present study demonstrated that HMGN5 contributes to the progression of urothelial bladder cancer (UBC) through regulating the expression of E-cadherin and vascular endothelial growth factor (VEGF)-C, which are associated with the sensitivity of tumor cells to cisplatin. Therefore, the present study aimed to elucidate the mechanisms underlying the regulation of HMGN5 and investigate the involvement of HMGN5 in cisplatin treatment. The results of the present study revealed that HMGN5 is able to positively regulate the expression of phosphorylated (p-)Akt in UBC cells. In addition, HMGN5 expression was negatively associated with the response of UBC cells to cisplatin. The findings indicated that HMGN5 may be a potential therapeutic target of cisplatin treatment, since cisplatin treatment reduced HMGN5 expression in a dose-dependent manner. It was also confirmed that the knockdown of HMGN5 decreased the viability, colony formation and invasion of 5637 cells but increased apoptosis under cisplatin treatment. The changes caused by HMGN5 knockdown in 5637 cells were able to be reversed by treatment with insulin-like growth factor-1 (IGF-1), which is a phosphoinositide 3-kinase (PI3K)/Akt signaling activator. Additionally, with the decreased expression of HMGN5, the expression of p-Akt, slug, E-cadherin and VEGF-C was subsequently inhibited. By contrast, the expression of cytochrome c, cleaved-caspase-3 and cleaved-poly ADP ribose polymerase was increased following HMGN5 knockdown. Consistently, these changes in protein expression were able to be reversed by IGF-1 treatment. In conclusion, findings from the in vitro experiments indicate that HMGN5 may a target of cisplatin treatment and that the inhibition of HMGN5 increases the chemosensitivity of UBC cells by inhibiting PI3K/Akt signaling.
منابع مشابه
Abstract. High‐mobility group nucleosome‐binding domain 5 (HMGN5) is the latest member of the HMGN family of proteins. Numerous studies have confirmed the carcinogenic role of HMGN5 in cancer, but its function in the regulation
High‐mobility group nucleosome‐binding domain 5 (HMGN5) is the latest member of the HMGN family of proteins. Numerous studies have confirmed the carcinogenic role of HMGN5 in cancer, but its function in the regulation of chemosensitivity is largely unknown and controversial. A previous study by the authors of the present study demonstrated that HMGN5 contributes to the progression of urothelial...
متن کاملLong non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway
Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...
متن کاملMK2206 potentiates cisplatin-induced cytotoxicity and apoptosis through an interaction of inactivated Akt signaling pathway.
OBJECTIVES To improve conventional chemotherapeutic efficacy, it is important to detect new molecular markers for chemosensitivity and possible accelerating cell-killing mechanisms. In this study, we investigated how MK2206, an allosteric Akt inhibitor, enhances the cisplatin (CDDP)-induced cytotoxicity and apoptosis in urothelial cancer cells. MATERIALS AND METHODS We examined bladder cancer...
متن کاملNicotine Induces Tumor Growth and Chemoresistance through Activation of the PI3K/Akt/mTOR Pathway in Bladder Cancer.
Continued smoking is highly associated with not only a higher incidence but also greater risk of tumor recurrence, progression, and acquired chemoresistance of urothelial carcinoma. We investigated whether nicotine affects urothelial carcinoma, and the detailed mechanism by which nicotine could induce tumor growth and any associated chemoresistance. Cell viability was evaluated in the human bla...
متن کاملCRISPR/Cas9, a new approach to successful knockdown of ABCB1/P-glycoprotein and reversal of chemosensitivity in human epithelial ovarian cancer cell line
Objective(s): Multidrug resistance (MDR) is a major obstacle in the successful chemotherapy of ovarian cancer. Inhibition of P-glycoprotein (P-gp), a member of ATP-binding cassette (ABC) transporters, is a well-known strategy to overcome MDR in cancer. The aim of this study was to investigate the efficiency and ability of CRISPR/Cas9 genome editing technology to knockdown ABCB1 gene expression ...
متن کامل